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We consider the microcanonical ensemble of a classical Hamiltonian dynamical system, the Hamiltonian
being parameter dependent and in the possible presence of other first integrals. We describe a thermodynamic
formalism in which a first law of thermodynamics, or fundamental relation, is based upon the bulk-entropy,
SV . Under an ergodic hypothesis,SV is shown to be an adiabatic invariant. Expressions for derivatives and
thermodynamic relations are derived within the microcanonical ensemble itself.
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Equilibrium properties of an isolated Hamiltonian d
namical system with many, say 1024, degrees of freedom is
probably best described using a thermodynamic formal
for a canonical ensemble at a fixed temperature, even tho
this means introducing fluctuations in an otherwise c
served quantity, the energy. For a more moderate numbe
degrees of freedom, say 1032108, numerical simulations be
come feasible, and it is desirable to obtain a description
terms of the microcanonical ensemble itself where the va
of the first integrals are fixed quantities. In such an approa
geometrical properties of the level surfaces reflect thermo
namic relations and, by invoking the ergodic hypothesis, a
dynamical properties of the underlying system. In particu
when energy is the only first integral, measurements m
then be done by time averaging~cf. Refs.@1,2#!. The purpose
of this Rapid Communication is to develop such a microth
modynamic formalism further, taking into account parame
dependency and the presence of other first integrals. Wi
this framework we will also~Sec. II! discuss a natural for
mulation of a first law of thermodynamics, or fundamen
relation, based upon the bulk-entropy,SV . We refer to Abra-
ham and Marsden@3# as well as Landau and Lifshitz@4# for
a general introduction to thermodynamic ensembles, to L
owitz et al. @5# for an illustrative example of some differ
ences between the ensembles and to Evans and Morris@6#
for practical calculations carried out in the micro canoni
ensemble. We also refer to Jeppset al. @7# where the pres-
ence of other~approximative! first integrals is of relevance
and to Otter@8# who studied reaction events using mixe
ensemble averages.

I. MICROCANONICAL ENSEMBLES

For simplicity, we consider a Euclidean phase spaceV
5R2d, d>1, and a Hamiltonian function,H:V→ R ,
bounded from below and of sufficient rapid growth at infi
ity. The dynamics preserves the Liouville measure, here
Lebesgue measure,m5ddxddp. There may be other first in
tegrals, denotedF5F1 , . . . ,Fm , m>0 Note that in Sec. III
we shall write F05H for the Hamiltonian which is then
considered at the same footing as the other first integrals
first integrals are assumed to be in involution. We also
sume that all functions are known analytically and that
Hamiltonian depends smoothly on some external real par
1063-651X/2001/64~5!/055101~4!/$20.00 64 0551
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eters, denotedL5L1 , . . . ,Ln . By contrast we do not allow
the other first integrals to depend onL. This is for technical
reasons~cf. below!, though in some cases such a conditi
could be relaxed. For fixed values of parameters,L5l, of
first integrals,F5I , and of the energy,Hl5E, the subspace
A5A@E,I ,l#5$jP R2d:Hl(j)5E,F(j)5I %, is invariant
under the dynamics ofHl . We will assume that values ar
chosen so that the differentials,dH, dF1 , . . . ,dFm , are all
independent onA@E,I ,l#. This in particular implies thatA is
a smooth co-dimensionm11 submanifold of our Euclidean
space.

In the literature one will find~at least! two definitions
~denoted bulk and surface! of a microcanonical entropy an
temperature. It turns out that we shall need both. Thus
define

eSV(E,I ,l)[E mQ~E2Hl!d~ I 2F !, ~1!

whereQ denotes the Heaviside function and

eSm(E,I ,l)[E md~E2Hl ,I 2F !. ~2!

The bulk- and the surface-temperature are then given by

1

TV
5

]SV

]E
,

1

Tm
5

]Sm

]E
. ~3!

Derivatives with respect to other first integrals are conside
in Sec. III. We also have generalized bulk- and surfa
pressures

pV
i 5TV

]SV

]l i
, pm

i 5Tm

]Sm

]l i
, i 51, . . . ,n. ~4!

Taking an average in the microcanonical ensemble w
here mean taking the surface-average, i.e.,

^f&m[^fuE,I ,l&5

E md~E2Hl ,I 2F !f

E md~E2Hl ,I 2F !

. ~5!
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In practice,̂ f&m , is often calculated by time-averaging~as-
suming ergodicity!, thus giving a dynamical preference
the surface-average relative to other ensemble-averages

The calculation of either of the two entropies may
difficult or even impossible when the number of degrees
freedom in the system is large. On the other hand, the a
ciated temperatures and generalized pressures may be p
using time-averaging~cf. Sec. III!. A bulk-pressure,pV

i , may
be calculated as follows:

pV
i 52 K ]Hl

]l i
L

m

52 K ]Hl

]l i
UE,I ,l&. ~6!

To see this we note that the derivative of a Heavysi
function yields ad-function. It follows that 1/TV5]SV /]E
5eSm/eSV, and therefore,

pV
i 5TV

]SV

]l i
52

E md~E2Hl ,I 2F !~]Hl /]l i !

E md~E2Hl ,I 2F !

. ~7!

By the very definition, there is always a first law of the
modynamics for the bulk-entropy:

TVdSV5dE1(
i

pV
i dl i . ~8!

The same kind of relation is, of course, valid for the surfa
entropy but, as we shall see, adiabatic invariance cle
gives a preference to the version involving the bulk-entro

II. ADIABATIC INVARIANCE

An adiabatic process is characterized by a slow a
smooth change in parameters during which ‘thermal equi
rium’ is maintained. For example, slowly moving a piston
a cylinder containing a gas of particles, in order to avo
what is known as parametric resonance, we fix a smooth
in parameter space,sP@0,1#°c(s)PRn, and traverse this
path in rescaled time, i.e.,tP@0,D#°l(t)5c(t/D), for
someD.0. A physical trajectory,j(t), is evolved from an
~almost! arbitrary point, j(0)PA@E,I ,l#, using the time-
andD- dependent Hamiltonian,Hl(t) . The goal is to deter-
mine the microcanonical state, i.e., the values of (E,I ), of
the system at timet5D. The process is called adiabatic
this state has a well-defined limit asD→`, the limit depend-
ing on the initial state (E,I ,l) and the path, but not on th
choice of initial point, cf. Arnold@9#, section 52. Here again
we do not permit the other first integrals to depend onL.
Being time-independent and commuting with the Ham
tonian, they therefore remain constant under the tim
involution. The energy,E(t)5Hl(t)„j(t)…, being time-
dependent throughl, is in general not constant in time
Instead we get by Hamilton’s equations:dE/dt
5( i]Hl i

/]l i(dl i /dt), and the ‘‘adiabatic’’ problem is

then to see ifE(D) has a well-defined limit asD→`.
In order to attain the adiabatic limit,D should be very

large, in particular larger than the time-scale,terg, over
05510
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which ergodic averaging takes place. We may then look
the time-average of an observable over an intermediate ti
scale,terg!dt!D. This time-scale is short enough so thatl
does not change significantly but long enough so that a
namical average may be replaced by a microcanonical a
age. Under this ‘‘adiabatic ergodic hypothesis’’ we get f
the energy-change

1

dtEt

t1dtdHl(t)+j~ t !

dt
dt' K dHl(t)

dt UE~ t !,I ,l~ t !&. ~9!

Over the time-scale,dt, the l-derivative is almost con-
stant~because of the scaling withD) and may therefore be
taken outside the average:

E~ t1dt !2E~ t !

dt
'(

i
K ]H

]l i
UE~ t !,I ,l~ t !&

dl i

dt
, ~10!

an expression which is correct to orderterg/D. Taking the
D→` limit we get an identity between differentials,

dE5(
i

K ]H

]l i
UE,I ,l&dl i , ~11!

valid precisely in the adiabatic limit. By Eqs.~6! and~8!, we
see that the bulk-entropy,SV , is indeed an adiabatic invari
ant. In 111 dimensions the bulk-entropy is just the actio
integral and the phenomena is well-known~adiabatic invari-
ance of the action, cf. Arnold@9#!. In higher dimensions a
similar result was obtained by Kazuga@10#, though in a dif-
ferent context.

Now, the bulk-entropy isa fortiori strictly increasing as a
function of the energy~at given parameter- and first integra
values!. One particular gratifying, though nontrivial cons
quence is that by traversing a loop adiabatically the ene
must return to its original value.

It is easy to put the adiabatic ergodic hypothesis into
more rigorous form~in terms of decay of correlation func
tions!. It is, however, virtually impossible to check analyt
cally if such a condition really holds in a given situatio
One serious problem is that critical slowing down~meaning
thatterg diverges! occurs if one encounters an additional fir
integral along the traversed path. On the other hand, sin
larities in the energy surface are likely to pose problems o
in low dimensions~notably 111!.

Should one allow other first integrals to depend on
parameters, the bulk-entropy, as we have defined it, is
general no longer an adiabatic invariant. We have not b
successful in finding a good replacement for the bu
entropy ~the reader is encouraged to try for himself! and
consequently not allowed such a parameter dependence

III. SURFACE DERIVATIVES

Close to equilibrium we may express response functi
as derivatives of averages with respect to parameters
values of the first integrals~in this section this includes the
Hamiltonian!. When the Hamiltonian is the only first integra
and there is no parameter dependence, it was shown in@1,2#
1-2
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~cf. also @7,11#! that energy derivatives of a microcanonic
average may themselves be calculated as averages. The
eral case turns out to be quite similar.

Our assumption on the first integrals being independ
means that in a neighborhood of the integral surfa
A@E,I ,l#, we may construct vector fields,X0 , . . . ,Xm , for
which

dFi~X j !5d i j , i , j 50, . . . ,m. ~12!

Geometrically, the vector field,X i , is transversal to theFi
5I i surface but parallel to the other surfaces,F j5I j , j Þ i .
We make the observation that iff (x) is a ~suitably smooth!
function andV is a vector field for whichd f(V)[0, then the
Lie-derivative, LVd„f (x)…5(V•¹)d„f (x)…[0, vanishes
identically. This is clearly true if thed-function were a
smooth function and the claim then follows by approxim
tion ~a rigorous proof is quite lengthy!. This applies to our
Hamiltonian setup, since for alli , j 50, . . . ,m

S ]

]I i
1~X i•¹! D ~ I j2F j !5d i j 2d i j 50. ~13!

Hence, iff is any smooth function,

E mfS ]

]I i
1~X i•¹! D d~ I 2F !50. ~14!

Taking theI i derivative outside the integral and carrying t
Lie-derivative out by partial integration we obtain

]

]I i
E md~ I 2F !f5E md~ I 2F !¹•~fX i !. ~15!

The identity, @]/]lk1]Hl /]lk(]/]E)#d(I 2F)[0 ~re-
call that only the Hamiltonian depends onL), also implies

]

]lk
E md~ I 2F !f52E md~ I 2F !¹•S f

]Hl

]lk
X0D .

~16!

The surface entropy is the logarithm of a surface integ
Hence, when taking derivatives a normalization factor
pears which precisely turns the derivative into a micro
nonical average. Thus, for the inverse ‘‘generalize
surface-temperatures,bm

i 5]Sm /]I i ~with bm
0 51/Tm), we get

using Eq.~15! and settingf51,

bm
i 5

]

]I i
E md~ I 2F !f

E md~ I 2F !f

5^¹•X i uE,I ,l&. ~17!

Similarly for the ‘‘generalized’’ pressures, using Eq.~16!,

pm
k 5

]Sm

]lk
52 K ¹•S ]Hl

]lk
X0D UE,I ,l&. ~18!

When taking a derivative of an average and writingd5d(I
2F) we have
05510
en-

nt
,

-

l.
-
-
’

]

]I i
^f&m5

]

]I i
E mdf

E md
2

]

]I i
E mdf

E md

]

]I i
E md

E md
, ~19!

which by the definition of averages and generalized temp
tures reduces to

]

]I i
^f&m5^¹•~fX i !&m2bm

i ^f&ms. ~20!

We calculate in the same way,

]

]lk
^f&m52 K ¹•S f

]Hl

]lk
X0D L

m

2pm
k ^f&m . ~21!

These thermodynamic identities provide the natural gene
zations of the results found in@1,2#. In the above formulas
the other first integrals may, in fact, be allowed to be para
eter dependent~essentially because there is no Heavys
function in the above!. The straight-forward derivation o
formulas in this case is no more difficult and left to th
reader.

We also note that if the Liouville measure has the fo
dm5r(j)d2dj ~for instance, in local coordinates on a sym
plectic manifold!, the only change in the above formulas is
replace the divergence of a vector field,¹•V, by (1/r)¹
•(rV) ~cf. Ref. @2#!.

IV. BULK DERIVATIVES

Should one wish to take derivatives in the bulk-ensem
the procedure is slightly different. Restricting our attention
the energy derivative, suppose thatY is a smooth vector field
such that@compare with Eq.~12!#

¹•Y[1 and dFi~Y![0, 1< i<m. ~22!

One may certainly find suchY when there are no other firs
integrals present. In the general case it is less clear bec
here we need the vector field to be defined ‘‘smoothl
throughout the ‘‘bulk.’’ Assuming, however, that we hav
found such a vector field we note that

eSV5E m~¹•Y!Q~E2H !d~ I 2F !, ~23!

which by partial integration yields

eSV5E mdHl~Y!d~E2H,I 2F !. ~24!

In particular, we obtain the following formula~which is
well-known, when energy is the only first integral! for the
bulk-temperature:

TV5eSV2Sm5^dHl~Y!uE,I ,l&. ~25!

For comparison we note that in the canonical ensem
where an integral off looks as follows:
1-3
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E me2bHld~ I 2F !f, ~26!

the same calculation shows that

Tcan5b215^dHl~Y!ub,I ,l&. ~27!

In the literaturedH(Y) is therefore often used to ‘‘define’
the microcanonical temperature~again measured by time
averaging!. With no other first integrals present one may ta
Y to be the canonical momenta divided by the number
degrees of freedom, i.e.,Y5P/d. In that case,dH(Y)
5(1/d)dH(P)51/d(qi̇pi is the normalized reduced actio
~proportional to the kinetic energy, when quadratic in m
menta!. By time-averaging, we obtain a quantity proportion
to the reduced action-integral. This is extremal under va
tions of the trajectory preserving the energy~Maupertius
principle, @9# Section 45!. One would thus expect a finit
time-average ofdH(P) to ‘‘probe’’ a larger neighborhood o
the trajectory than time-averages of other observables.
suggests a faster ergodic averaging, whence stronger num
cal stability, when calculating time-averages ofdH(P) rela-
tive to other observables of the same ensemble-variance

V. AN EXAMPLE

Consider an ensemble ofN particles moving on a
3-dimensional torus, (R / Z)3, under the influence of pair
potentials. Putting things on a torus compactifies the confi
rational space but otherwise does not affect our results.
Hamiltonian, H5( i 50

N pi
2/2mi1( i , jU(xi2xj ), is transla-

tional invariant, hence the total momenta,ptot5(pi , pro-
vides three first integrals in addition to the Hamiltonian.
one uses the normalized total kinetic energy here as a m
sure of the temperature one runs into the following parad
A configuration which minimizes the potential energy b
has all particles moving at the same constant velocity,v0, is
stationary. With no ‘‘apparent activity’’ one should assign
temperature zero to this configuration, but this is clearly
what the total kinetic energy does.
-

05510
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One solution to this paradox suggests itself: Move to
frame where the average velocity vanishes. Such a proce
is, in fact, a natural consequence of our microcanonical
malism. To get the prefactors right we carry out the deta
If P5(p1 , . . . ,pN,0, . . . ,0) denotes the full momentum ve
tor in R3N3(R/Z)3N andv5( ipi /( imi is the average veloc
ity, then the reduced momentum vector and kinetic energ
given by Z5(p12m1v, . . . ,pN2mNv,0, . . . ,0) and K red
5( i(pi2miv)2/2mi , respectively. Straight-forward calcula
tions givedH(Z)52K red anddptot(Z)[0. The latter is pre-
cisely the requirement of ‘‘parallelism’’ needed for both Eq
~12! and ~22!. Furthermore, we have¹•Z53(N21), and
¹•„Z/dH(Z)…5„3(N21)22…/(2K red). After the appropri-
ate normalization, formulas~17! and ~25! yield the surface-
and bulk-temperatures

1

Tm
5 K 3~N21!22

2K red
L

m

and TV5 K 2K red

3~N21!L
m

.

~28!

In both cases the conservation of three momenta results
subtraction of three degrees of freedom as compared to
unconstrained case~pleasing on physical grounds!. It is in-
teresting also to note that the above formulas involving
reduced kinetic energy are valid irrespective of the total m
mentum being preserved or not. When the total momen
is only approximately preserved one could use the ab
construction to define an approximate ‘‘instantaneous’’ a
possibly ‘‘local’’ temperature. In Ref.@7#, such a problem
was considered and the solution suggested was to choo
vector field,Z, depending on the configurational coordinat
only. This automatically ensures ‘‘parallelism,’’ i.e
dptot(Z)[0, and leads to what is often denoted the ‘‘co
figurational temperature.’’ On the other hand, for numeri
reasons the reduced kinetic energy may be preferable.

The case of a conserved angular momentum~an experi-
ment involving an axial symmetry! follows the same
straight-forward procedure and is left to the reader.
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